Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 28, 2026
-
Combustion vehicle emissions contribute to poor air quality and release greenhouse gases into the atmosphere, and vehicle pollution has been associated with numerous adverse health effects. Roadways with extensive waiting and/or passenger drop-off, such as schools and hospital drop-off zones, can result in a high incidence and density of idling vehicles. This can produce micro-climates of increased vehicle pollution. Thus, the detection of idling vehicles can be helpful in monitoring and responding to unnecessary idling and be integrated into real-time or off-line systems to address the resulting pollution. In this paper, we present a real-time, dynamic vehicle idling detection algorithm. The proposed idle detection algorithm and notification rely on an algorithm to detect these idling vehicles. The proposed method relies on a multisensor, audio-visual, machine-learning workflow to detect idling vehicles visually under three conditions: moving, static with the engine on, and static with the engine off. The visual vehicle motion detector is built in the first stage, and then a contrastive-learning-based latent space is trained for classifying static vehicle engine sound. We test our system in real-time at a hospital drop-off point in Salt Lake City. This in situ dataset was collected and annotated, and it includes vehicles of varying models and types. The experiments show that the method can detect engine switching on or off instantly and achieves 71.02 average precision (AP) for idle detection and 91.06 for engine off detection.more » « less
-
null (Ed.)Short-term exposure to fine particulate matter (PM2.5) pollution is linked to numerous adverse health effects. Pollution episodes, such as wildfires, can lead to substantial increases in PM2.5 levels. However, sparse regulatory measurements provide an incomplete understanding of pollution gradients. Here, we demonstrate an infrastructure that integrates community-based measurements from a network of low-cost PM2.5 sensors with rigorous calibration and a Gaussian process model to understand neighborhood-scale PM2.5 concentrations during three pollution episodes (July 4, 2018, fireworks; July 5 and 6, 2018, wildfire; Jan 3−7, 2019, persistent cold air pool, PCAP). The firework/wildfire events included 118 sensors in 84 locations, while the PCAP event included 218 sensors in 138 locations. The model results accurately predict reference measurements during the fireworks (n: 16, hourly root-mean-square error, RMSE, 12.3−21.5 μg/m3, n(normalized)-RMSE: 9−24%), the wildfire (n: 46, RMSE: 2.6−4.0 μg/m3; nRMSE: 13.1−22.9%), and the PCAP (n: 96, RMSE: 4.9−5.7 μg/m3; nRMSE: 20.2−21.3%). They also revealed dramatic geospatial differences in PM2.5 concentrations that are not apparent when only considering government measurements or viewing the US Environmental Protection Agency’s AirNow’s visualizations. Complementing the PM2.5 estimates and visualizations are highly resolved uncertainty maps. Together, these results illustrate the potential for low-cost sensor networks that combined with a data-fusion algorithm and appropriate calibration and training can dynamically and with improved accuracy estimate PM2.5 concentrations during pollution episodes. These highly resolved uncertainty estimates can provide a much-needed strategy to communicate uncertainty to end users.more » « less
-
Abstract One of the primary challenges associated with evaluating smoke models is the availability of observations. The limited density of traditional air quality monitoring networks makes evaluating wildfire smoke transport challenging, particularly over regions where smoke plumes exhibit significant spatiotemporal variability. In this study, we analyzed smoke dispersion for the 2018 Pole Creek and Bald Mountain Fires, which were located in central Utah. Smoke simulations were generated using a coupled fire‐atmosphere model, which simultaneously renders fire growth, fire emissions, plume rise, smoke dispersion, and fire‐atmosphere interactions. Smoke simulations were evaluated using PM2.5observations from publicly accessible fixed sites and a semicontinuously running mobile platform. Calibrated measurements of PM2.5made by low‐cost sensors from the Air Quality and yoU (AQ&U) network were within 10% of values reported at nearby air quality sites that used Federal Equivalent Methods. Furthermore, results from this study show that low‐cost sensor networks and mobile measurements are useful for characterizing smoke plumes while also serving as an invaluable data set for evaluating smoke transport models. Finally, coupled fire‐atmosphere model simulations were able to capture the spatiotemporal variability of wildfire smoke in complex terrain for an isolated smoke event caused by local fires. Results here suggest that resolving local drainage flow could be critical for simulating smoke transport in regions of significant topographic relief.more » « less
An official website of the United States government
